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Abstract 24 

After rainfall, soil moisture is the most important factor dictating flash flooding, since 25 

rainfall infiltration and runoff are based on the saturation of the soil. However, continuous and 26 

regional soil moisture data acquisition is difficult by ground-based measurement. As such, soil 27 

moisture is often derived from land surface models and used by agencies such as the National 28 

Oceanic and Atmospheric Administration’s National Weather Service (NOAA/NWS) as a proxy 29 

for estimates of soil moisture at the surface in order to support operational flood forecasting. The 30 

current Flash Flood Guidance (FFG) system at the Arkansas Red Basin River Forecast Center 31 

(ABRFC) provides gridded flash flood guidance (GFFG) by using the soil moisture from the NWS 32 

Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) to scale Natural 33 

Resources Conservation Service curve numbers. This study evaluates the contribution of remote 34 

sensing technology to quantifiable improvements in HL-RDHM soil moisture as well as adding a 35 

satellite-based soil moisture component to the NWS FFG Algorithm. The Soil Moisture and Ocean 36 

Salinity (SMOS) satellite of European Space Agency operates at an L-band (1.4 GHz) wavelength 37 

which offers relatively deeper penetration and has lower sensitivity to vegetation impacts than 38 

other microwave satellite platforms.  It has been shown to be well-suited for observing surface soil 39 

moisture. The purpose of this paper is to determine, execute, and assess a method of SMOS data 40 

assimilation applicable for use with the HL-RDHM modeling system. The value of remote sensing 41 

data in constraining modeled soil moisture states is evaluated. Results from the technique 42 

developed in this study imply a potential for SMOS-based improvement of the GFFG product. The 43 

technique is also expected to be useful for assimilating soil moisture data from the Soil Moisture 44 

Active Passive (SMAP). 45 

 46 
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1. Introduction 49 

Soil moisture interacts with the atmosphere through evaporation and transpiration, and 50 

drives infiltration and runoff during heavy rain events. The available water storage capacity in the 51 

soil column influences the amount of runoff and the potential for flash floods. Flash flooding is a 52 

rapid water level rise in a stream above a predetermined flood level, beginning within six hours by 53 

intense rainfall associated with severe weather phenomena, or the collapse of a dam. In the U.S., 54 

losses over 30 years have averaged 8.2 billion dollars in damage and 89 fatalities per year 55 

according to the flood loss data in the Hydrologic Information Center (HIC) database 56 

(http://www.nws.noaa.gov/oh/hic/). The number of fatalities and damage to property likely could 57 

have been reduced if additional advance notice of potential flash flooding had been provided. In 58 

spite of the deadly impact of flash floods, they are relatively poorly observed and forecasted (Seo 59 

et al., 2013) compared to other natural hazards (Gruntfest, 2009).  60 

Given the close ties between the state of the soil column and flash flooding, reliable soil 61 

moisture information would help to improve flash flood forecasts. Unfortunately, the current main 62 

sources of soil moisture data--ground-based measurements and hydrologic models--provide only 63 

limited insight into the overall state of soil moisture. Conducting ground-based measurements of 64 

soil moisture consistently and regionally is difficult, and obtaining comparable soil moisture from 65 

hydrologic models is complicated in both structure and parameterization (Houser et al., 1998). 66 

Remote sensing-based platforms provide a strong alternative and are less subject to spatial 67 
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coverage limitations (Jackson et al., 1999), and with microwave remote sensing, soil moisture can 68 

be estimated from the emissive and scattering characteristics of the soil surface.  69 

The application of remote sensing to measure soil moisture has been researched over the 70 

last thirty years using both passive and active microwave instruments (Ulaby et al.,1981). 71 

Microwave remote sensing at low frequencies is well-suited for estimating soil moisture since it 72 

is very sensitive to the dielectric properties of the soil (Jackson et al., 1995). The low frequency 73 

microwave spectrum has the advantage of deeper penetration and is less subject to atmospheric 74 

effects. Two microwave satellite missions, the ESA Earth Explorer SMOS (Soil Moisture and 75 

Ocean Salinity) launched on November 2009 and NASA's SMAP (Soil Moisture Active Passive) 76 

scheduled to launch in December 2014, take advantage of low microwave frequencies for remote 77 

sensing of soil moisture. The previous SMOS assimilation research showed that the peak runoff 78 

observations were improved when SMOS soil moisture was applied providing soil moisture 79 

conditions which implies the potential benefit of SMOS soil moisture data in the forecasting of 80 

floods (Lievens et al., 2015). 81 

In this study, a method of assimilating SMOS soil moisture into the National Weather 82 

Service’s HL-RDHM is established to support improved soil moisture simulations and associated 83 

flash flood applications in the Arkansas-Red River basin. SMOS soil moisture data at a 0.25 degree 84 

resolution processed at NOAA NESDIS was obtained and downscaled to the 4 km x 4 km HL-85 

RDHM grid typically used by the NWS for distributed hydrologic modeling. For the purpose of 86 

flash flood forecasting, moisture content information from the surface down through the root zone 87 

of the soil column (around 50 cm to 100 cm from the surface) is crucial. Also, since flash floods 88 

occur on short time scales, hourly soil moisture information is important for flash flood analysis 89 

and forecasting applications.  However, SMOS only provides soil moisture content to a depth of a 90 
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few centimeters (Bircher et al., 2012) and features a 2 to 3 day revisit time.  Insertion of the 91 

snapshot-type surface data from SMOS into HL-RDHM provides the vehicle needed for blending 92 

the accuracy of observations with the expanded depth and increased temporal frequency that a 93 

model can offer.   94 

Remotely sensed satellite soil moisture is expected to improve current hydrologic analysis 95 

and forecast systems, including flash flood forecasts which depend on rapidly updated information. 96 

The ultimate goal of this study is to create the framework for satellite based soil moisture 97 

assimilation into HL-RDHM, which will in turn benefit the GFFG system which depends on HL-98 

RDHM output.  99 

2. Downscaling of SMOS data 100 

2.1 Dataset 101 

The dynamics and distribution of surface soil moisture are controlled by variables such as 102 

soil properties, vegetation characteristics, topography, land surface temperature, solar radiation, 103 

and precipitation and have commonly been used in many downscaling techniques.  This study was 104 

focusing on the development of the technique to utilize SMOS satellite data into hydrologic model 105 

for flash flood guidance. Downscaling work was unavoidable to prepare the SMOS data to be 106 

suitable to the HL-RDHM which functions for Arkansas-Red River basin gridded flash flood 107 

guidance. The downscaling method in this study meant to be as simple as possible using three 108 

variables only so the objective of the study remains to focus on promoting satellite soil moisture 109 

data on the flash flood application. Advanced downscaling methods can be adopted in the future 110 

study from other studies including that for use in hydrologic studies (Kaheil et al., 2008), that using 111 
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meteorological data (Merlin et al., 2005; Merlin et al., 2006; Piles et al., 2011), that utilizing high-112 

resolution land surface properties (Pellenq et al., 2003; Shin & Mohanty, 2013), that using thermal 113 

Moderate Resolution Imaging Spectroradiometer (MODIS) data (Lievens et al., 2016) and that 114 

reproduce the statistical properties of soil moisture (Mascaro et al., 2010; Ko et al., 2016). 115 

In this study, keeping it simple but considering the availability of directly measured data 116 

through remote sensing, three dominant physical controls--sand fraction, vegetation characteristics  117 

by Normalized Difference Vegetation Index (NDVI) and elevation--were selected to estimate 118 

SMOS soil moisture at the high resolution 4km study scale. These three geophysical attributes are 119 

proxies for other significant attributes such as slope, aspect, vegetation water content, and soil type 120 

(Das et al., 2014).  121 

Soil moisture content and movement are affected by soil texture since the hydraulic 122 

conductivity and water holding capacity of the soil depend on sand fraction. Soils with a higher 123 

sand fraction will have a higher infiltration rate and evaporative flow.  This typically leads to a 124 

lower soil moisture content and illustrates the inverse covariance of soil moisture with sand 125 

fraction. Sand fraction was acquired from the International Soil Reference and Information Center 126 

(ISRIC) world soil information database. The dataset provides global information at a 5 arc minute 127 

(~ 9km) resolution but was rescaled to 4 km. Sand fraction data from the study area (Arkansas Red 128 

River basin) at a 0-20 cm depth was extracted for this study.  129 

Thirty arc second elevation data was acquired from the GTOPO30 global digital elevation 130 

model (DEM), developed by the U.S. Geological Survey (USGS).  Typically, higher elevation 131 

areas are drier than lower elevations due mainly to the effect of gravity (Henninger et al., 1976). 132 

This topographic effect is most visible in the upper layer of the soil. As with sand fraction, 133 
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elevation and soil moisture are thus inversely related. The elevation of study area is relatively high 134 

in the west and gradually decreases toward the east.  135 

NDVI is a strong indicator of vegetation status over time and has a positive correlation to 136 

soil moisture. The higher vegetation density increases biomass, fallen leaves, and soil organic 137 

matter that preserve the moisture in soil. Also, the vegetation cover helps to decrease evaporation 138 

by screening the sun (Das et al., 2014). In order to capture the seasonal dynamic characteristics of 139 

vegetation effects, monthly NDVI were included in the downscaling technique. For the variable 140 

vegetation status, monthly NDVI dataset was obtained from MODIS. The NDVI dataset also 141 

shows the east side of study area is seasonally more variable than the west. 142 

The SMOS soil moisture product was obtained from NOAA’s National Environmental 143 

Satellite Data and Information Service (NESDIS), after they reproduced data in 0.25 degree using 144 

their algorithm. This 0.25 degree (~25km) dataset was used as the core soil moisture in this study. 145 

2.2 Methodology 146 

SMOS soil moisture is downscaled using Equations 1(a), (b), (c) and Equation 2 (Das, 147 

2014) with the physical control parameters described in previous section (2.1). SF(i), EL(i), and 148 

NDVI(i,t) are the sand fraction, elevation and monthly normalized difference vegetation index 149 

respectively at the original scale at which the data was obtained, and SFw_4km(i), ELw_4km(i), and 150 

NDVIw_4km(i,t) are weighted values at a 4km resolution. SM4km(i,t) is the downscaled 4km SMOS 151 

soil moisture at location i and at time t. SM25km is SMOS soil moisture at 25 km resolution, and m 152 

is the number of 4 km pixels within a 25 km grid cell. Equation 2 represents the combined effect 153 

of the physical controls on the evolution of surface soil moisture, including the negative covariance 154 
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of the sand fraction and elevation, and the positive covariance of NDVI.  The physical control 155 

parameter terms (1/SFw_4km(i), 1/ELw_4km(i), and NDVIw_4km(i)) were simply averaged and then  156 

multiplied by the coarse resolution SMOS soil moisture value (Das, 2014). 157 
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  162 

Figure 1 shows the image of the original coarse resolution (25km) and post-downscaling 163 

fine resolution (4km) SMOS soil moisture. Considerable sub-pixel variability is obtained via this 164 

downscaling process. For example, while one sample coarse SMOS pixel has a volumetric value 165 

of 0.59, the corresponding 6 x 6 set of downscaled pixels have a standard deviation of 0.06.  166 
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  167 

 168 

Figure 1 SMOS soil moisture pixels image comparison at coarse (25km) resolution (top) and downscaled 169 

(4km) resolution (bottom). The image map shows soil moisture in study area of Arkansas-Red river basin 170 

on May 13th, 2010 171 

2.3 Bias Correction 172 

2.3.1 Comparison of SMOS retrievals to in situ Soil Moisture 173 

Measurements 174 

In support of assessing the suitability of SMOS soil moisture for use in the assimilation 175 

process, a brief validation study was carried out comparing the coarse and downscaled SMOS soil 176 

moisture against in situ measurements. Soil moisture measurements were obtained from the U.S. 177 
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Climate Reference Network (USCRN) data distributed by the NOAA National Climate Data 178 

Center. Many USCRN stations are equipped to observe relative humidity, soil moisture and soil 179 

temperature (Diamond et al., 2013). The Goodwell and Stillwater sites in Oklahoma and Joplin in 180 

Missouri were selected as study stations within the Arkansas-Red river basin. Since the La Junta 181 

station in Colorado does not have available soil moisture data, it was not included as a validation 182 

site.  Daily and hourly time-averaged 0-5cm fractional volumetric soil moisture was obtained for 183 

2010. This observation depth was chosen as it most closely matches the depth observed by SMOS 184 

using its L-Band microwave radiometer (Kerr et al., 2010, Kerr et al., 2012, Entekhabi et al., 2010). 185 

Geologic, climate, and physical soil characteristics for the three stations are listed in Table 1 (Bell 186 

et al., 2013, www.weatherbase.com). It should be noted that the Goodwell site features different 187 

characteristics compared to other two sites; lower average soil moisture and precipitation along 188 

with lower soil bulk density which is related to high porosity. Moreover, it was verified via satellite 189 

images that the vegetation coverage at the Goodwell site is less dense than that at Stillwater and 190 

Joplin.   191 

Daily point-type soil moisture measurements from USCRN, 25km gridded SMOS soil 192 

moisture, and downscaled 4km gridded SMOS soil moisture were validated in a time series fashion 193 

from May 4th to December 31st, 2010. SMOS data at both scales display drying and wetting 194 

similar to the USCRN measurements, yet the values are mostly negatively biased as shown in 195 

Figure 2 (-0.065, -0.100, and -0.112 at Goodwell, Stillwater and Joplin respectively). Several 196 

validation studies were reviewed (Al Bitar et al., 2012; Jackson et al., 2012; Lee et al., 2002;), with 197 

each indicating that a comparison of SMOS soil moisture and in situ measurements from different 198 

sources yielded negative biases. These studies commonly stated that the variation of errors 199 

depended on vegetation coverage and the wetness of the climate (Pan et al., 2012; Albergel et al. 200 
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2012).  The validation of SMOS soil moisture conducted for this study indicated the best overall 201 

USCRN-SMOS match occurred at Goodwell (dry climate and low vegetation cover). Given the 202 

preceding findings, it was necessary to bias correct the SMOS data before assimilation into HL-203 

RDHM. The data adjustment methodology underpinning the bias correction is explained in the 204 

following section. 205 

Table 1 Geologic, climate and soil information at three stations 206 

Stations Goodwell, OK Stillwater, OK Joplin, MO 

Latitude 36.59 36.12 37.43 

Longitude -101.59 -97.09 -94.58 

Average measured soil moisture 

from USCRN (cm3/cm3) 
0.13 0.24 0.30 

Annual average precipitation (mm) 406.4 850.9 967.7 

Surface description Low prairie grass Grass Grass 

 Soil description Sandy Hard sand 
Sand/Organic 

matter 

Soil Bulk Density (g/cm3) 0.13 0.24 0.30 

Bias -0.065 -0.100 -0.112 

Average NDVI 0.39 0.66 0.69 

   

Figure 2 Negative biased SMOS soil moisture compared to USCRN in situ measurement 207 



12 

 

2.3.2 Bias Correction 208 

The aim of the SMOS mission is to provide high accuracy and resolution surface soil 209 

moisture observations using innovative microwave L-band technology (Kerr et al., 2001). 210 

However, the negative biases inherent in the SMOS soil moisture observations complicate their 211 

use in hydrologic data assimilation. With bias correction unavoidable, a statistical correction using 212 

mean and variance was applied to adjust the data before use in HL-RDHM. 213 

Under the statistical correction technique, the distribution of a reference source (e.g. 214 

modeled distribution) is matched to, and corrects, the distribution of the desired data set (Choi and 215 

Jacobs, 2008). USCRN and HL-RDHM datasets (smc1-soil moisture content at the first layer from 216 

surface) were both considered as reference sources. Patterns in the top layer soil moisture estimates 217 

from HL-RDHM matched those present in the USCRN data, yet the data range was overly low. It 218 

overestimated soil moisture during dry periods and underestimated during wet periods as shown 219 

in Figure 3. USCRN measurements also present a promising pool of data, but are limited by the 220 

small number of measurement sites. To counter the datasets' weak points, HL-RDHM 4km soil 221 

moisture was averaged with a kriging-based interpolated USCRN data (Figure 4) to produce a 222 

reference source. The kriging method weights the surrounding measured values from USCRN to 223 

derive a prediction for an unmeasured locations shown in Equation 3, where Z (si) is the measured 224 

value at the ith location, λi is an unknown weight for the measured value at the ith location, S0 is the 225 

prediction location and N is the number of measured values. 226 

����� = ∑ �	���	


	�� �        Equation 3 227 
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 228 

Figure 3 Comparison of daily soil moisture between HL-RDHM output smc1 (5 to 10 cm depth) and 229 

USCRN in situ measurements from the surface to 5 cm for 2010. 230 

 231 

 232 

Figure 4 Interpolated USCRN soil moisture measurements (cm3/cm3) from 10 sites over the Arkansas-red 233 

river basin on May 13th, 2010 234 

Corrected SMOS soil moisture values are derived using Equation 4 where Xt is the 235 

corrected SMOS soil moisture value,  xt  is the downscaled SMOS soil moisture at time t, 
��  and 236 

���   are the means of the downscaled SMOS and merged reference soil moisture respectively, and 237 
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��
�� and ����� are the standard deviations of the downscaled SMOS and merged reference soil 238 

moisture respectively. 239 

                    �� = ��� �
��������� ����� �

�����
      Equation 4 240 

Figure 5 adds a trace for bias corrected SMOS data which verifies best during wet periods. 241 

This behavior stems from the fact that the non-corrected SMOS soil moisture observations 242 

matched the USCRN in situ relatively well during dry periods (e.g. the beginning of October in 243 

Goodwell and Stillwater sites and between July 15th and August 15th at the Joplin site). Thus the 244 

statistical correction technique shifted up the negatively biased data to USCRN measurement 245 

values mostly during wet periods but resulted to overestimate soil moisture during these periods.  246 

 247 

 248 

Figure 5 Comparison of SMOS soil moisture data at coarse resolution (25 km) and fine (4km) resolutions, 249 

bias corrected, and USCRN measurements for the three sites. 250 
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3 Integration of SMOS retrievals to HL-RDHM 251 

Raw SMOS soil moisture data has spatial, vertical and temporal characteristics that make 252 

it ill-suited for use with the NWS’s operational hydrologic forecast system without data pre-253 

processing. Having previously covered the spatial downscaling of this data in Section 2, this 254 

section further describes the necessary pre-processing steps along with the assimilation procedure 255 

used to ingest SMOS data into the HL-RDHM system. 256 

While the L-band wavelength is well-suited for soil moisture sensing compared to other 257 

microwave wavelengths (Mascaro & Vivoni, 2012), the sensing depth at this frequency is still 258 

limited to approximately 5 cm (Escorihuela et al., 2010). Unfortunately, land-atmosphere 259 

interaction processes are highly dependent on the profile of soil moisture in the deeper root zone 260 

(Houser et al., 1998). Numerous promising approaches for estimating the soil moisture profile 261 

have been demonstrated (Bruckler and Witono, 1989; Entekhabi et al., 1994; Crow et al., 2008).  262 

With a requirement to maintain compatibility with existing NWS hydrologic modeling systems 263 

and the GFFG product, it was decided to use a direct insertion technique in conjunction with 264 

existing soil profile rebalancing tools offered by HL-RDHM’s Sacramento Soil Moisture 265 

Accounting model, versions of which underpin GFFG and other hydrologic operations within the 266 

NWS. 267 

HL-RDHM is currently executed on rectangular Hydrologic Rainfall Analysis Project 268 

(HRAP) grid. This grid is based on a polar stereo graphic map projection with standard latitude of 269 

60° North and longitude of 105° west. The grid size is approximated as 4 km 270 

(http://www.nws.noaa.gov/ohd/hrl/nwsrfs/users_manual/part2/_pdf/21hrapgrid.pdf). Each grid 271 

cell consists of a water balance component and hillslope and channel routing component. The 272 
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water balance component of the HL-RDHM uses the SAC-SMA and kinematic wave model is 273 

employed for hillslope channel routing (Koren et al., 2004). 274 

SAC-SMA is a semi-conceptual model of soil moisture accounting that uses empirical and 275 

lumped coefficients to attempt to mimic the physical constraints of water movement in a natural 276 

system (Burnash, 1995). SAC-SMA basically operates on two layers, upper zone and lower zone. 277 

Each zone consists of tension and free water storages that represent the soil column’s water holding 278 

capacity. The free water storage in lower zone is divided into two sub-storages which control 279 

supplemental and primary ground water flows. Figure 6 illustrates a structure of water storages 280 

that interact with tension and free water to generate soil moisture states and runoff components in 281 

SAC-SMA. Tension water is held in place by the molecular attraction between soil particles and 282 

water and can be separated from the soil and returned to the atmosphere through 283 

evapotranspiration. Upper zone is active and permeable layer near surface which is mainly the 284 

source of the most storm runoff. Upper zone tension water represents that volume of precipitation 285 

which moisturizes soil and precedes the development of interflow and percolation. Free water is 286 

liquid state that is not bound to soil particles so percolates through the soil to replenish soil 287 

moisture deficiency in response to gravitational and pressure forces (Burnash, 1995). In Figure 6, 288 

the precipitation will fill up the upper zone tension water storage (UZTWM) as upper zone tension 289 

water contents at level 1(uztwc1) rise to level 2 (uztwc2). The excesses upper zone tension water 290 

infiltrates to the upper zone free water storage (UZFWM) and replenish from level 1(uzfwc1) to 291 

level 2 (uzfwc2). HL-RDHM outputs the water contents (uztwc, uzfwc) in fractional unit which 292 

varies from 0 to 1 where 1 is saturated. When the upper zone saturation demand is satisfied, surface 293 

runoff occurs in fast response and interflow occurs slowly from the upper zone free water storage 294 

at daily withdrawal rate (UZK). Available water after surface runoff from precipitation percolates 295 
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down to the lower zone when the upper zone soil moisture deficit is less than the amount of 296 

precipitation. The same mechanism will work in lower zone tension (LZTWM) and free water 297 

storage where supplies moisture to meet the evapotranspiration demands. Free water storage in 298 

lower zone is divided into supplemental and primary (LZFSM, LZFPM) and creates the slow 299 

response water movements including supplemental and primary ground water runoff and channel 300 

base flow. 301 

 302 

Figure 6 SAC-SMA soil moisture interaction diagram 303 
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The most recent version of the Sacramento model available within the HL-RDHM 304 

modeling framework, SAC-HTET (Sacramento Heat Transfer with enhanced Evapo 305 

Transpiration) (Koren, et al., 2010), was selected for use in this research. SAC-HTET is modified 306 

version of SAC-SMA and SAC-HT which includes a physically-based treatment of 307 

evapotranspiration adapted from the Noah land surface model (LSM). The physical soil layer 308 

definitions of SAC-HTET were leveraged to ensure incorporation of SMOS soil moisture at the 309 

proper layer. The soil moisture state is named by the model as smc0, smc1, smc2, smc3 and smc4 310 

at each physical soil layer frz_0, frz_1, frz_2, frz_3 and frz_4. Depths and number of layers in 311 

SAC-HTET vary spatially as soil texture varies. frz_0 is a constant value as 3 cm of depth which 312 

represent the interception, frz_1varies -5 to -16 cm and frz_2 varies -16 to 63 cm over the study 313 

area watershed. The main advantage of using SAC-HTET for this study is the model’s revised 314 

upper and lower zone soil water redistribution process ( Koren et al., 2010) which provides a link 315 

between the physical and conceptual soil layers. This is especially important for assimilation, as a 316 

path is needed to carry the observed satellite soil moisture from the physical layer model entry 317 

point, to the conceptual zones where runoff processes are executed. 318 

 In SAC-HTET, evaporative and freeze-thaw processes are calculated using the model’s 319 

physical soil layers while rainfall runoff processes are calculated using the model’s upper and 320 

lower zone conceptual storage reservoirs.  Using the model’s physical layers as an entry point, 321 

SMOS soil moisture data was assimilated into the smc1 layer using the direct insertion technique 322 

(Figure 7).  In order to ensure consistency between the model’s conceptual and physical sides 323 

during the soil moisture assimilation process, and to update the profile of the soil column, a SAC-324 

HTET function was utilized to translate soil moisture content in the model’s physical layers to the 325 

model’s upper and lower zone conceptual storage reservoirs. This mapping function works by first 326 
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dividing the physical layers between upper and lower zones.  The total amount of water contained 327 

within the two groups of physical layers is then computed and used to scale the original amount of 328 

water contained in the upper and lower storage reservoirs.  In this way, it was possible to draw 329 

SMOS data into the rainfall runoff calculations that form the center of the model.  This direct 330 

insertion process was repeated each time SMOS data was available to overwrite existing values of 331 

smc1.  332 

 333 

Figure 7  Illustration of SMOS soil moisture assimilation into HL-RDHM/SAC-HET. SMOS soil 334 

moisture observation replaces the soil moisture content of the first layer (smc1), which is output from the 335 

previous HL-RDHM run. 336 

Before any assimilation experiments were carried out with HL-RDHM, a two year 337 

(October 2008 through May 2010) cold start spin-up run was conducted. Drawing all initial 338 

conditions except top layer soil moisture (smc1) from the end of this spin-up run, the first SMOS 339 

assimilation run was started in a warm-start fashion at 00Z on May 4th, 2010. Top layer soil 340 

moisture conditions were taken directly from prepared (downscaled and bias corrected) SMOS 341 

soil moisture observations, with this data completely replacing the pre-existing model-based smc1 342 
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data field. After the data replacement, HL-RDHM was executed for a 24 hour period, at the end of 343 

which model states were saved to serve as initial conditions for the next day’s simulation. 344 

Beginning the second simulation day, the SMOS-based smc1 field was once again substituted for 345 

the model-based smc1 field, and a second 24-hour run was executed. This 24 hour run cycle was 346 

repeated for the entire study period, with warm-start runs initializing once every 24 hours using 347 

data from the previous day’s run along with SMOS soil moisture data.  A parallel set of 24-hour 348 

runs was conducted without SMOS assimilation to provide data for comparison. 349 

While sub-daily remotely sensed soil moisture information would be desirable for 350 

enhancing flash flood-related hydrologic modeling systems, the revisit period of SMOS for the 351 

same location is only every 2 to 3 days (Kerr et al., 2010). In particular, as Figure 8 displays, 352 

SMOS data covers only part of the study basin (ABRFC) each day. Since a spatially complete soil 353 

moisture data set is required to initialize HL-RDHM, areas without available SMOS observed soil 354 

moisture were filled in using existing smc1 pixels from the previous model state. 355 

 356 

Figure 8 Six consecutive daily SMOS soil moisture images over the study area from May 8th to May 13th 357 

2010 358 
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4 Results and Discussion 359 

4.1  Time Series Comparison and Analysis 360 

Several comparison analyses of HL-RDHM soil moisture with and without SMOS 361 

assimilation were carried out. In the first analysis, hourly simulated 5-10cm soil moisture (with 362 

assimilation) is plotted against USCRN measurements at the same depth from May, 2010 to 363 

December, 2010. As depicted in Figure 9, top layer modeled soil moisture resulting from the 364 

assimilation of SMOS data closely follows the actual SMOS observations at the Goodwell site. 365 

While the match is not as good at the Stillwater site, the with-SMOS simulation matches the dry 366 

conditions indicated by the USCRN measurements better than the without-SMOS simulation, 367 

which does not fall below a value of 0.32 cm3/cm3. It is worth mentioning that even though SMOS-368 

sensed low values of soil moisture were assimilated into the top layer of the model, the model 369 

subsequently moistened this layer over a matter of hours until it reached the model’s lower soil 370 

moisture limit value of 0.32 cm3/cm3 (wilting point). For this reason, the red line (with SMOS 371 

assimilation) tends to return to the blue line (without SMOS assimilation) after SMOS observations 372 

are inserted. Similar behavior can be noted in the Joplin time series plot. 373 

During some periods of precipitation over the Joplin site, SMOS observations indicate 374 

relatively wet conditions that run contrary to the USCRN-based measurements. This is indicative 375 

of the uncertainty that arises in a comparison between point-type data (USCRN measurement) and 376 

area-averaged data (16 km2 HL-RDHM output). Another source of uncertainty centers on the 377 

SMOS soil moisture data we used in the study. Although SMOS descending data (1800 local time) 378 

is more error prone (Dente et al., 2012; Jackson et al., 2012) the data used in this study was a 379 

NESDIS daily composite and not separated into ascending and descending groups.  380 
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Figure 9 Hourly soil moisture plots of top layer soil moisture from USCRN measurements, HL-RDHM 381 

smc1 output with SMOS assimilation, and without SMOS assimilation from May 2010 to September 382 

2010. 383 

 384 
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4.2  Performance Statistics 385 

Two analyses are carried out in this section to evaluate the accuracy of SMOS soil moisture 386 

and the impact of SMOS assimilation on HL-RDHM soil moisture fields. First, statistical 387 

evaluation of SMOS soil moisture data was performed to check the reliability of the data. Root 388 

mean square errors (RMSE) were computed for standard and bias-corrected SMOS retrievals using 389 

USCRN measurements as a baseline. This analysis revealed that the level of agreement between 390 

SMOS retrievals and USCRN measurements differs when the soil is wet versus dry. Accordingly 391 

RMSEs were recomputed for two data groups partitioned with a dividing line of 0.3 (Table 2). The 392 

RMSEs of the SMOS retrievals (before bias correction) were calculated as 0.07, 0.11, and 0.12 for 393 

the Goodwell, Stillwater and Joplin sites respectively. Goodwell, which features -the lowest annual 394 

average precipitation (429 mm) and average soil moisture (0.13 cm3/cm3) of the three sites, low 395 

vegetation cover, sandy -soil texture, and low soil bulk density (1.026 g/cm3) also has a relatively 396 

low RMSE value. This result echoes the findings of other studies (Al Bitar et al., 2012; Jackson et 397 

al., 2012; Albergel et al., 2012) which showed that the performance of SMOS depends on soil 398 

wetness and vegetation optical depth. The results also indicate that SMOS retrievals perform better 399 

when the soil is dry, given the increase in RMSE at all three sites when higher soil moisture cases 400 

are examined. Conversely, the bias correction appears to function more effectively for wet cases.  401 

Given the soil-moisture dependent performance of the bias correction scheme, future correction 402 

methods should be varied based on the level of soil wetness. 403 

 404 

 405 
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Table 2 RMSE of SMOS soil moisture retrievals with and without bias correction for all data and for 406 

cases where soil moisture values are greater than 0.3 volumetric. 407 

Sites 

Bias of 

 SMOS  

retrievals 

RMSE of SMOS retrievals 
RMSE of bias corrected SMOS 

retrievals 

All data Soil moisture > 0.3 (cm3/cm3) All data Soil moisture > 0.3 (cm3/cm3) 

Goodwell - 0.065 0.076 0.155 0.083 0.071 

Stillwater - 0.100 0.111 0.139 0.077 0.034 

Joplin - 0.112 0.120 0.151 0.078 0.049 

 408 

Using USCRN measurements as a reference, three statistical criteria (RMSE, variance and 409 

standard deviation) were next computed to assess the accuracy of HL-RDHM smc1 soil moisture 410 

with and without SMOS assimilation (Figure 9 and Table 3). The results are mixed, with SMOS 411 

assimilation leading to slightly increased RMSE at Goodwell and Joplin, and decreased RMSE at 412 

the Stillwater site.  The standard deviation of the simulated soil moisture increases with SMOS 413 

assimilation at the Stillwater and Joplin sites (0.005 and 0.003 respectively) but decreases at 414 

Goodwell.  415 

Several explanations can be made for these results. The underlying assumption of the 416 

preceding analyses is that the representative measurement depth is similar regardless of the source 417 

of the data. However, variations in these depths may have negatively impacted the results. Soil 418 

moisture measurements from the USCRN network represent the average value over a depth of 5 419 

to 10 cm, while the effective depth of the HL-RDHM smc1 soil moisture variable varies pixel to 420 

pixel from 5 to 16 cm. The SMOS soil moisture observation depth is assumed to be up to 5 cm, 421 

but is relatively uncertain and varies depending on vegetation thickness and soil wetness  (Bircher 422 
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et al., 2012; Dente et al., 2012). Further complicating comparisons, USCRN soil moisture is 423 

measured at point while HL-RDHM provides areal-type soil moisture values on a 4 km by 4 km 424 

grid. Large differences have been shown to occur between in situ observations only a few meters 425 

apart (Collow et al., 2012), making comparisons between point-type and areal-type soil moisture 426 

values even more challenging (Jackson et al., 2006).  427 

Although the soil moisture output by HL-RDHM after SMOS assimilation did not precisely 428 

match the USCRN measurements, the assimilation of the remotely sensed data did act to shape the 429 

model’s soil moisture stores, especially on a daily level. Ultimately, the aforementioned 430 

uncertainties notwithstanding, satellite-based soil moisture assimilation into HL-RDHM was 431 

successfully demonstrated, with a pathway established for inserting soil moisture observations into 432 

the model. In addition, the SMOS-assimilation-based increases in SAC-HTET’s upper zone 433 

saturation ratio in the test case above hints at a potential SMOS-driven improvement in flash flood 434 

forecasts. Further case studies are necessary to confirm this limited finding. 435 

Table 3 Statistics (RMSE, variance and standard deviation) of smc1 comparison between without SMOS 436 

assimilation and with SMOS assimilation 437 

Sites 

smc1-Without SMOS assimilation smc1-With SMOS assimilation 

RMSE 
Standard 

Deviation 
RMSE 

Standard  

Deviation 

Goodwell 0.038 0.040 0.069 0.030 

Stillwater 0.098 0.023 0.094 0.028 

Joplin 0.108 0.025 0.114 0.028 
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4.3  Comparison of upper zone saturation ratio-GFFG input 438 

The GFFG system uses upper zone saturation ratio (Equation 4) to obtain an adjusted CN 439 

value and calculate the available initial abstraction. Differences between the upper zone saturation 440 

ratio with and without SMOS assimilation would thus affect the estimation of rainfall depth and 441 

runoff needed to cause flash flooding in given unit of time. Therefore, an analysis of uzsat (upper 442 

zone saturation) speaks directly to the impact of SMOS assimilation on the GFFG system.  Toward 443 

this end, the upper zone saturation ratio (uzsat) was computed using the study data as shown in 444 

Equation 4, where uztwm is upper zone tension water storage (maximum capacity) and uzfwm is 445 

upper zone free water storage of HL-RDHM: 446 

   ��� � =
����!" ×���!$�%���&!"×��&!$�

���!$%��&!$
  Equation 4 447 

The higher uzsat values resulting from SMOS assimilation in this study case, and illustrated 448 

in Figure 10, highlight the potential for improving flash flood detection via improved GFFG 449 

values. For example, through an investigation of the NWS flash flood event database (Seo et al., 450 

2013), it was found that flash flooding occurred in Newton and McDonald Counties of Missouri 451 

(latitude 36.93°, longitude -94.44°), an area near to the Joplin study site (latitude 37.43°, longitude 452 

-94.58°), on May 16th, 2010. This flood date coincides with the first uzsat peak on the Joplin plot, 453 

circled in purple in Figure 10. In this graph, the red line (with SMOS assimilation) reaches a value 454 

of 1, while the blue line (without SMOS assimilation) tops out at about 0.85. According to archived 455 

GFFG data on that day, the pixel values of GFFG corresponding to Newton and McDonald County 456 

were 2.59 inches for 6 hours, meaning that flash flooding could be expected if 2.59 inches of rain 457 

fell in 6 hours or less. However, flash flooding occurred when the 6-hour rainfall reached only 458 
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0.29 inches after the GFFG was issued. The higher value of uzsat in the with-SMOS HL-RDHM 459 

simulation would have led to lower computed GFFG values and thus an indication of the increased 460 

potential for flash flooding. 461 

 462 

 463 

Figure 10 Hourly upper zone saturation ratio calculated from HL-RDHM’s uztwc, uztwm, uzfwc, and 464 

uzfwm with SMOS assimilation (red line) and without SMOS assimilation (blue line) 465 
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5 Summary and Conclusion 466 

The goal of this study was to develop an approach to assimilate satellite-based soil moisture 467 

data into the NWS’s HL-RDHM hydrologic modeling system, thus supporting a downstream 468 

improvement in the GFFG product. The impact of soil moisture information on flash flood 469 

forecasts was discussed and the detailed technique of SMOS soil moisture data assimilation, 470 

including spatial scaling and bias adjustment, was described. SMOS soil moisture data was 471 

assimilated into the smc1 layer of the SAC-HTET model using the direct insertion technique, a 472 

SAC-HTET function was utilized to translate soil moisture content in the model’s top physical 473 

layer to the model’s upper and lower zone conceptual storage reservoirs. Missing SMOS pixels 474 

were replaced with HL-RDHM smc1 model-based values valid at the same time.  475 

An investigation into the impact of SMOS assimilation on HL-RDHM soil moisture states 476 

smc1, uztwc, uzfwc, and the upper zone saturation ratio was carried out.  Soil wetness variations in 477 

the SMOS data were reasonably translated to HL-RDHM, although a short persistence time was 478 

noted.  Given the direct link between uzsat and GFFG values, it was also noted that the higher HL-479 

RDHM uzsat values caused by SMOS assimilation would have improved the potential for a correct 480 

flash flood forecast in the case study.  Additional case studies need to be conducted to further 481 

define the extent of this GFFG benefit. 482 

The accuracy of SMOS observed soil moisture varies with the characteristics of the 483 

underlying soil, vegetation and geography. At the three study sites (Goodwell, Stillwater, and 484 

Joplin), it was found that the magnitude of the bias in SMOS measurements depends on the soil 485 

dryness and vegetation cover, with better performance found for relatively dry and bare soil. As 486 

such, a refinement of both the soil moisture retrieval algorithm and the bias correction method 487 
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applied in this study may contribute to more accurate soil moisture estimations from SMOS. 488 

Overall, a simple technique for assimilating satellite based soil moisture into the HL-RDHM 489 

hydrologic modeling system was successfully developed. In addition, a potential improvement of 490 

GFFG, and thus flash flood forecasts, was seen to result from the assimilation of SMOS data, 491 

paving the way for further studies in this area. The assimilation technique developed in this study 492 

is expected to benefit a wide range of hydrologic modeling applications, and should prove useful 493 

for assimilating forthcoming SMAP data as well. 494 
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